Sadržaj predmeta

Treće poglavlje

Definicija matrice, specijalne vrste matrica. Operacije s matricama.

Motivacija za uvođenjem matrica. Primjeri primjena matrica u kompjutorskoj grafici. Definicija matrice. Format matrice. Primjeri matrica. Jednakost matrica. Specijalne vrste matrica: kvadratna, dijagonalna, gornjetrokutasta, donjetrokutasta, jedinična, jednoredna, jednostupčana, nulmatrica. Operacije s matricama: transponiranje matrica, zbrajanje matrica, množenje matrice realnim brojem. Definicija i svojstva simetričnih i antisimetričnih matrica. Svojstva množenja matrica realnim brojem. Skup matrica tipa (m,n) uz operacije zbrajanja matrica i množenja matrica realnim brojem je linearni ili vektroski prostor. Skalarni produkt uređenih n-torki. Množenje ulančanih matrica. Svojstva množenja matrica. Inverzna matrica. Množenje matrica nije komutativno. Inverzna matrica kvadratne matrice reda 2. Motivacija za uvođenje determinanti.

Determinante. Svojstva determinanti.

Definiranje pojma determinanta za kvadratne matrice. Deduciranje formula za računanje determinanti drugog i trećeg reda. Sarrusovo pravilo za računanje matrica trećeg reda. Svojstva determinanti: transponirane matrice, jedinične matrice, gornjetrokutaste matrice, matrice pomnožene realnim brojem, matrice potencirane prirodnim brojem, matrice koja ima dva jednaka stupca (reda), matrice kojoj su elementi nekog reda (stupca) jednaki nuli... Binet-Cauchyjev teorem o determinanti produkta dviju matrica. Računanje determinanti upotrebom svojstava determinanti tako da se svodi na determinantu trokutaste matrice.

Laplaceov razvoj determinanti. Inverzna matrica. Matrične jednadžbe.

Regularna i singularna matrica. Uvođenje pojma minora matrice za determinantu submatrice zadane matrice. Definiranje pojma algebarski komplement koji je potreban za razvoj determinante po i-tom redu ili j-tom stupcu. Izvod formule za Laplaceov razvoj determinante. Primjena algebarskih komplemenata za određivanje inverza regulane matrice. Svojstva inverzne matrice. Primjeri traženja inverznih matrica. Rješavanje matričnih jednadžbi oblika AX=B, XA=B, gdje je A regularna matrica. Jednažba AX+XB=C. Primjeri rješavanja matričnih jednadžbi.