Otisni knjiguOtisni knjigu

Sadržaj predmeta

Ovdje se nalazi knjiga s cjelokupnim sadržajem predmeta.

Sjedište: ELF 2018/2019
E-kolegij: Matematika
Knjiga: Sadržaj predmeta
Otisnuo/la: Gost (anonimni korisnik)
Datum: Thursday, 21. November 2024., 17:48

Osnovno o predmetu

Dragi studenti, dobrodošli na predmet Matematika! 

Ovaj kolegij namijenjen je studentima prve godine stručnog studija Primjena informacijske tehnologije u poslovanju (PITUP).

Nastavnici:

  • doc.dr.sc. Zlatko Erjavec
  • dr.sc. Marcel Maretić
  • Marija Jakuš, dipl. inž.
  • Darko Jembrek, prof. mat.
  • Bojan Žugec, dipl. inž.

Satnica / ECTS: 60 (2+2) / 6 ECTS bodova.

Cilj:

Cilj kolegija Matematika I je upoznavanje studenata s osnovnim pojmovima diskretne matematike (kao što su matematički modeli, matematička logika te skupovi i relacije) i linearne algebre(matrice, determinante, sustavi linearnih jednadžbi i nejednadžbi) koji su neophodni za prihvaćanje kvantitativnih aspekata znanja u informacijskim i organizacijskim znanostima te priprema studenata za logičko razmišljanje u znanosti i poslovanju. Predmet ima i generičke ciljeve kao što su razumijevanje modela, upotreba literature i razvoj ICT vještina, te posebno strategije rješavanja problemskih zadataka. Nadalje, koncepcija rada omogućava razvoj vještina apstrakcije kod studenata.

Nastava:

Predavanja, seminari i online nastava.

Ispit:

Bodovi koje student skupi za vrijeme praćenje njegovog rada tijekom semestra (kratke provjere i aktivnost), prema razrađenoj shemi se pribrajaju ostvarenim bodovima na pismenom dijelu ispita i to samo onim studentima koji su skupili više od 25 bodova (30 bodova je za prolaz). Uvjet za usmeni ispit je položeni pismeni ispit na istom ispitnom roku.

Uvodno poglavlje

Matematički modeli i struktura matematike

Model kao zamjena za neki realni objekt ili pojavu. Matematički model sadrži pojavu ili proces iz realnog svijeta i apstraktnu matematičku strukturu. Svrha matematičkih modela: prezentiranje informacija u što razumljivijem obliku, jednostavnije računanje, predviđanje. Matematičko modeliranje. Podjela matematičkih modela. Izgradnja matematičke teorije. Matematički pojmovi: osnovni i izvedeni. Dokazivanje teorema: indirektni i direktni dokaz. Deduktivna metoda. Primjeri aksiomatizacije geometrije i algebre.

Prvo poglavlje

Sudovi i operacije među njima

Uvod u matematičku logiku. Uvođenje pojma sud. Operacije sa sudovima: negacija, konjunkcija, disjunkcija, implikacija, ekvivalencija. Svojstva osnovnih operacija algebre sudova. Tablice istinitosti za pojedine operacije. Veza implikacije sa: obratom teorema, suprotnim teoremom i obratom suprotnog teorema. 

Formule algebre sudova

Formula algebre sudova. Posebne formule algebre sudova: tautologija i kontradikcija. Poznate tautologije deduktivnog zaključivanja: modus ponens, modus tolens, hipotetički silogizam, disjunktivni silogizam, dodavanje, pojednostavljivanje,. Izrada semantičkih tablica za formule algebre sudova. Definiranje funkcije algebre sudova u skladu s općim pojmom funkcije.

Normalne forme i minimizacija

Određivanje bazičnih konjunkcija i bazičnih disjunkcija. Određivanje formule za funkciju zadanu semantičkom tablicom pomoću disjunktivne i konjunktivne normalne forme. Minimizacija funkcije: algebarski (primjenom svojstava algebre sudova) i grafički (Vejčovom metodom, Karnoughov graf). Uvođenje operacija NOR i NAND. Primjena normalnih formi i minimizacije na kreiranje logičkog sklopa za danu funkciju.

Predikati i kvantifikatori

Uvođenje pojma predikat kao poopćenje pojma sud. Univerzum razmatranja za zadani predikat. Zapisivanje predikata pomoću tablice (matrice predikata). Uvođenje univerzalnog i egzistencijalnog kvantifikatora. Određivanje veze između kvantifikatora i logičkih operacija. Negacija kvantifikatora. Sudovi s više kvantifikatora. Važnost redosljeda kvantifikatora.

Drugo poglavlje

Skupovi

Zadavanje skupa: nabrajanjem elemenata, definiranjem svojstva elemenata koja određuju pripadnost skupu pomoću predikata. Paradoksi teorije skupova. Doprinos Cantora i Zermela. Skupovi brojeva. Relacije među skupovima: relacija sadržavanja, jednakost skupova, pravi podskup. Partitivni skup. Operacije sa skupovima: unija, presjek, razlika, komplement, simetrična razlika. Svojstva skupovnih operacija: zakon idempotencije, komutativnost, asocijativnost, distributivnost, De Morganovi zakoni, zakon involucije, zakon identitete. Primjena tablice pripadnosti na dokazivanje. Kartezijev produkt skupova. Prikaz elemenata Kartezijevog skupa pomoću točaka u ravnini.

Binarna relacija

Definiranje binarne relacije. Primjeri relacija (diskretni i kontinuirani slučajevi). Prikazivanje relacije grafički pomoću čvorova i lukova. Matrica incidencije. Određivanje relacije obrata, relacije komplementa i dualne relacije za zadanu relaciju. Svojstva binarnih relacija: refleksivnost, simetričnost, tranzitivnost, irefleksivnost, antisimetričnost, kompletnost, stroga kompletnost... Posebne uređajne relacije. Svojstva relacije ekvivalencije. Primjeri relacije ekvivalencije: modularna ekvivalencija, jednakost na skupu, paralelnost na skupu pravaca ravnive, sukladnost trokuta na skupu svih trokuta. Dokazivanje da li je relacija relacija ekvivalencije. Upotreba relacije ekvivalencije. Povezivanje pojmova klasa ekvivalencije i kvocijentni skup s relacijom ekvivalencije.

Relacija parcijalnog uređaja. Funkcije kao relacije.

Svojstva relacije parcijalnog uređaja. Dokazivanje da li je relacija relacija parcijalnog uređaja. Najveći i najmanji element u parcijalno uređenom skupu. Teorem o jedinstvenosti najvećeg elementa. Linearno uređen skup ili lanac. Relacija dobrog uređaja. Grafička interpretacija svojstava binarnih relacija. Interpretacija svojstava u matrici incidencije. Uvođenje pojma funkcija preko relacije. Konstantna funkcija. Injekcija. Surjekcija. Bijekcija. Inverzna funkcija. Važnost bijekcije kod inverzne funkcije i jednakobrojnosti skupova. Grafički prikaz funkcija. Permutacija.

Treće poglavlje

Definicija matrice, specijalne vrste matrica. Operacije s matricama.

Motivacija za uvođenjem matrica. Primjeri primjena matrica u kompjutorskoj grafici. Definicija matrice. Format matrice. Primjeri matrica. Jednakost matrica. Specijalne vrste matrica: kvadratna, dijagonalna, gornjetrokutasta, donjetrokutasta, jedinična, jednoredna, jednostupčana, nulmatrica. Operacije s matricama: transponiranje matrica, zbrajanje matrica, množenje matrice realnim brojem. Definicija i svojstva simetričnih i antisimetričnih matrica. Svojstva množenja matrica realnim brojem. Skup matrica tipa (m,n) uz operacije zbrajanja matrica i množenja matrica realnim brojem je linearni ili vektroski prostor. Skalarni produkt uređenih n-torki. Množenje ulančanih matrica. Svojstva množenja matrica. Inverzna matrica. Množenje matrica nije komutativno. Inverzna matrica kvadratne matrice reda 2. Motivacija za uvođenje determinanti.

Determinante. Svojstva determinanti.

Definiranje pojma determinanta za kvadratne matrice. Deduciranje formula za računanje determinanti drugog i trećeg reda. Sarrusovo pravilo za računanje matrica trećeg reda. Svojstva determinanti: transponirane matrice, jedinične matrice, gornjetrokutaste matrice, matrice pomnožene realnim brojem, matrice potencirane prirodnim brojem, matrice koja ima dva jednaka stupca (reda), matrice kojoj su elementi nekog reda (stupca) jednaki nuli... Binet-Cauchyjev teorem o determinanti produkta dviju matrica. Računanje determinanti upotrebom svojstava determinanti tako da se svodi na determinantu trokutaste matrice.

Laplaceov razvoj determinanti. Inverzna matrica. Matrične jednadžbe.

Regularna i singularna matrica. Uvođenje pojma minora matrice za determinantu submatrice zadane matrice. Definiranje pojma algebarski komplement koji je potreban za razvoj determinante po i-tom redu ili j-tom stupcu. Izvod formule za Laplaceov razvoj determinante. Primjena algebarskih komplemenata za određivanje inverza regulane matrice. Svojstva inverzne matrice. Primjeri traženja inverznih matrica. Rješavanje matričnih jednadžbi oblika AX=B, XA=B, gdje je A regularna matrica. Jednažba AX+XB=C. Primjeri rješavanja matričnih jednadžbi.

Četvrto poglavlje

Sustav m linearnih jednadžbi s n nepoznanica

Uvođenje pojma linearna jednadžba s n nepoznanica. Definiranje sustava m linearnih jednadžbi s n nepoznanica. Uvođenje pojmova: određen, neodređen i kontradiktoran sustav. Rješavanje sustava linearnih jednadžbi pomoću inverzne matrice: postupak i primjeri. Rješavanje sustava jednadžbi pomoću determinanti. Cramerovo pravilo o rješenjima sustava linearnih jednadžbi. Primjeri određenih, neodređenih i kontradiktornih sustava od n jednadžbi i n nepozanica riješeni pomoću Cramerovog postupka.

Gaussov postupak

Uvođenje pojma ekvivalentni sustavi linearnih jednadžbi. Elementarne transformacije sustava jednadžbi. Primjena elementarnih transformacija na recima za dobivanje ekvivalentnog sustava zadanom sustavu. Opće rješenje sustava linearnih jednadžbi. Posebno (partikularno) rješenje sustava linearnih jednadžbi. Bazično rješenje sustava linearnih jednadžbi. Tipični primjeri zadataka traženja rješenja sustava pomoću Gaussovog postupka. Uspoređivanje svih metoda kod rješavanja sustava i njihove efikasnosti u pojedinim slučajevima. Određivanje inverzne matrice pomoću Gaussovog postupka.

Rang matrice. Homogeni sustav linearnih jednadžbi.

Definiranje pojma ranag matrice. Određivanje ranga matrice po definiciji. Određivanje ranga matrice upotrebom elementarnih transformacija na recima i stupcima. Kronecker-Capellijev teorem o konzistentnosti sustava jednadžbi i njegov dokaz. Homogeni sustav linearnih jednadžbi. Trivijalno rješenje homogenog sustava. Roucheov teorem kao posljedica primjene Kronecker-Capellijevog teorema na homogeni sustav od n jednadžbi s n nepoznanica.