
Software Development
Challenges
We are witnessing an enormous expansion
in the use of software in business,
industry, administration and research.
Software is no longer marginal in
technical systems but has now become a
central factor in many fields. System
features based on software functionality,
rather than other characteristics, are
becoming the most important factor in
competing on the market, for example in
the car industry, the service sector and in
schools. Increasing numbers of software
users are non-experts. These trends place
new demands on software. Usability,
robustness, simple installation and
integration become the most important
features of software. As a consequence of
the wider area of software utilisation, the
demand for the integration of different
areas has increased. We distinguish
between vertical integration in which data
and processes at different levels are
integrated, and horizontal integration in
which similar types of data and processes
from different domains are integrated.
For example, in industrial process
automation, at the lowest levels of
management (Field Management), data
collected from the process and controlled
directly, is integrated on the plant level
(Process Management), then is further
processed for analysis and combination
with data provided from the market and
finally published on the Web (Business
Management).

A consequence of all this is that software is
becoming increasingly large and complex.
Traditionally, software development
addressed challenges of increasing
complexity and dependence on external
software by focussing on one system at a
time and on delivery deadlines and
budgets, while ignoring the evolutionary
needs of the system. This has led to a
number of problems: the failure of the
majority of projects to meet their deadline,
budget, and quality requirements and the
continued increase in the costs associated
with software maintenance. To meet these
challenges, software development must be
able to cope with complexity and to adapt

quickly to changes. If new software
products are each time to be developed
from scratch, these goals cannot be
achieved. The key to the solution to this
problem is reusability. From this
perspective Component-based Development
(CBD) appears to be the right approach.
In CBD software systems are built by
assembling components already developed
and prepared for integration. CBD has
many advantages. These include more
effective management of complexity,
reduced time to market, increased
productivity, improved quality, a greater
degree of consistency, and a wider range
of usability [1].

Component-based
Software Engineering —

New Challenges in
Software Development

Ivica Crnkovic
Mälardalen University
Department of Computer Engineering
Västerås, Sweden
ivica.crnkovic@mdh.se
http://www.idt.mdh.se/~icc

The primary role of component-based
software engineering is to address the

development of systems as an
assembly of parts (components),

the development of parts as reusable
entities, and the maintenance and

upgrading of systems by customising
and replacing such parts. This

requires established methodologies
and tool support covering the entire

component and system lifecycle
including technological,

organisational, marketing, legal,
and other aspects. The traditional

disciplines from software engineering
need new methodologies to support

component-based development.
IVICA CRNKOVIC assesses the

challenges of this emerging
technology and discusses its
implications for the software

development process.

127Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

Non-experts...place new demands
on software.

Winter 2001focus
review

software2-4 260302 8:49 AM Page 127

However, there are several disadvantages
and risks in using CBD which can
jeopardise its success.

• Time and effort required for development
of components. Among the factors which
can discourage the development of
reusable components is the increased
time and effort required, the building of
a reusable unit requires three to five
times the effort required to develop a
unit for one specific purpose. (B.
Spencer, Microsoft, Presentation at 22nd

ICSE, 1999, also an interesting
observation about efficient reuse of real-
time components, made by engineers at
Siemens [2] that, as a rule of thumb, the
overhead cost of developing a reusable
component, including design plus
documentation, is recovered after the
fifth reuse. Similar experience at ABB
[3] shows that reusable components are
exposed to changes more often than
non-reusable parts of software at the
beginning of their lives, until they reach
a stable state.)

• Unclear and ambiguous requirements. In
general, requirements management is an
important part of the development
process, its main objective being to
define consistent and complete
component requirements. Reusable
components are, by definition, to be
used in different applications, some of
which may yet be unknown and the
requirements of which cannot be
predicted. This applies to both functional
and non-functional requirements.

• Conflict between usability and reusability.
To be widely reusable, a component
must be sufficiently general, scalable and
adaptable and therefore more complex
(and thus more complicated to use), and
more demanding of computing resources
(and thus more expensive to use). A
requirement for reusability may lead to
another development approach, for
example building a new, more abstract,
level which gives less flexibility and fine
tuning, but achieves better simplicity
[3,4].

• Component maintenance costs. While
application maintenance costs can
decrease, component maintenance costs
can be very high since the component
must respond to the different
requirements of different applications
running in different environments, with
different reliability requirements and
perhaps requiring a different level of
maintenance support.

• Reliability and sensitivity to changes. As
components and applications have
separate lifecycles and different kinds of
requirements, there is some risk that a
component will not completely satisfy
the application requirements or that it
may include concealed characteristics
not known to application developers.
When introducing changes on the
application level (changes such as
updating of operating system, updating
of other components, changes in the
application, etc.), there is a risk that the
change introduced will cause system
failure. To enjoy the advantages and
avoid the problems and risks, we need a
systematic approach to component-
based development at the process and
technology levels.

Component-Based Software
Engineering
The concept of building software from
components is not new. A ‘classical’ design
of complex software systems always begins
with the identification of system parts
designated subsystems or blocks, and on a
lower level modules, classes, procedures
and so on. The reuse approach to software
development has been used for many
years. However, the recent emergence of
new technologies has significantly
increased the possibilities of building
systems and applications from reusable
components. Both customers and
suppliers have had great expectations
from CBD, but their expectations have
not always been satisfied. Experience has
shown that component-based
development requires a systematic
approach to and focus on the component

aspects of software development [3].
Traditional software engineering
disciplines must be adjusted to the new
approach, and new procedures must be
developed. Component-based Software
Engineering (CBSE) has become
recognised as such a new sub-discipline of
Software Engineering.

The major goals of CBSE are the
provision of support for the development
of systems as assemblies of components,
the development of components as
reusable entities, and the maintenance
and upgrading of systems by customising
and replacing their components [5]. The
building of systems from components and
the building of components for different
systems requires established
methodologies and processes not only in
relation to the development/maintenance
aspects, but also to the entire component
and system lifecycle including
organisational, marketing, legal, and
other aspects. In addition to specific CBSE
objectives such as component specification
or composition and technologies, there
are a number of software engineering
disciplines and processes that require
specific methodologies for application in
component-based development. Many of
these methodologies are not yet
established in practice, some are not even
developed. The progress of software
development in the near future will
depend very much on the successful

Winter 2001 focus review

128 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Figure 1 The development cycle compared with the waterfall model

Software engineering disciplines
must be adjusted to the new

approach, and new procedures
must be developed.

software2-4 260302 8:49 AM Page 128

establishment of CBSE and this is
recognized by both industry and
academia. All major software engineering
conferences now include sessions related
to CBSE, and CBSE workshops are held
frequently [6–10]. According to the
Gartner Group [11] ‘By 2002, 70% of all
new applications will be deployed using
component-based application building
blocks.’

Overviews of certain CBSE disciplines and
some of the relevant trends and
challenges in the near future are
presented below.

Component Specification
For a common understanding of
component-based development, the
starting point is an agreement of what a
component is and what it is not. As a
generic term the concept is pretty clear —
a component is a part of something — but
this is too vague to be useful. The
definition of a component has been widely
discussed [13,14]. However, we shall adopt
Szyperski’s definition [4], which is the
most frequently used today:

A software component is a unit of
composition with contractually specified
interface and explicit context
dependencies only. A software component
can be deployed independently and is
subject to composition by third parts.

The most important feature of a
component is the separation of its
interface from its implementation. This
separation is different from those that we
can find in many programming languages
(such as ADA or Modula-2), in which

declaration is separated from
implementation, or those in object-
oriented programming languages in which
class definitions are separated from class
implementations. We require that the
integration of a component into an
application should be independent of the
component development lifecycle and that
there should be no need to recompile or
re-link the application when updating with
a new component. Another important
characteristic of the separation is that the
component implementation is only visible
through its interface. This is especially
significant for components delivered by a
third party. An implication of this is the
requirement for a complete specification
of a component including its functional
interface, non-functional characteristics
(performance, resources required, etc.),
use cases, tests, etc. While current
component-based technologies successfully
manage functional interfaces, there is no
satisfactory support for managing other
parts of a component specification.

The component definition adopted above
is focused on the use of components. It says
little about how to design, implement and
specify a component. There are however,
other definitions that point to other aspects
of component-based development. For
example there is a strong relation between
object-oriented programming (OOP) and
components. Component models (also
called component standards) COM/DCOM
[15,16], .NET [17], Enterprise Java Beans
(EJB) [15,17], and CORBA Component
Model (CCM) [20] relate Component
Interface to Class Interface. Components
adopt object principles of unification of
functions and data encapsulation.
Cheesman and Daniels [21] consider that a
component can exist in several forms

during its lifecycle: Component Specification
(component characteristics, component
function), Component Interface (a part of its
specification, a definition of a component’s
behaviour), Component Implementation (a
realisation of a Component Specification),
Installed Component (deployed instance of a
Component Implementation) and
Component Object (an instance of Installed
Object). Not all researchers agree that
components are extensions of OOP. On
the contrary, they consider that the
difference between components and objects
lies in the fact that an object has state and
is a unit of instantiation, while a
component is stateless and is a unit of
deployment [4].

There are also different understandings of
CBD in academia and industry [22]. While
researchers in academia define
components as well-defined entities (often
small, and with easily understood
functional and non-functional features),
industry sees components as parts of a
system which can be reused, but are not
necessarily well defined with explicit
interfaces and with slight or no
conformance with component models. A
component can be an amorphous part of
a system, the adaptation of which may
require much effort. Such components (or
rather reusable entities) are of extreme
importance, as the larger the components
are, the greater the productivity that can
be achieved by their reuse.

Component specification remains a topic
of research. Component standards are
mostly concentrated on the interface
definition, while non-functional properties
are specified (if specified at all) informally
in separate documentation. Some
improvements in that direction, by
gathering both functional characteristics
and design characteristics, have been
made in the new Microsoft Component
Model .NET.

Component-Based System
Development Lifecycle
CBSE addresses the requirements,
challenges and problems similar to others
encountered elsewhere in software
engineering. Many of the methods, tools
and principles of software engineering can
be used in the same or in a similar way as
in other types of applications or systems
but there is one distinction, CBSE covers
both component development and system
development with components. There is a
slight difference in the requirements and

Winter 2001 focus review

129Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

Figure 2 UML component

software2-4 260302 8:49 AM Page 129

business ideas in the two cases and
different approaches are necessary. Of
course, when developing components,
other components can be (and often must
be) incorporated but the main emphasis is
on reusability: Components are built to be
used and reused in many applications,
some not yet existing. A component must
be well specified, easy to understand,
sufficiently general, easy to adapt, easy to
deliver and deploy and easy to replace.
The component interface must be as
simple as possible and strictly separated
(both physically and logically) from its
implementation. Marketing factors play an
important role as development costs must
be recovered from future earnings, this
being especially true for COTS. However,
the main problem in developing
components is in the acquisition and
elicitation of requirements in combination
with COTS selection [23] because the
process includes multi-criteria decisions. If
the process begins with requirements
selection, it is highly probable that a COTS
meeting all the requirements will not be
found. If components are selected too early
in the process, the system obtained may
not meet all the requirements.

Development with components is focused
on the identification of reusable entities
and relations between them, starting from
the system requirements. The early design
process includes two essential steps: Firstly,
specification of a system architecture in
terms of functional components and their
interaction, this giving a logical view of the
systems and secondly, specification of a
system architecture consisting of physical
components.

Different lifecycle models, established in
software engineering, can be used in CBD.
These models will be modified to
emphasise component-centric activities.
Let us consider, for example, the waterfall
model using an extreme component-based
approach. Figure 1 shows the waterfall
model and the meaning of the phases.
Identifying requirements and a design in
the waterfall process is combined with
finding and selecting components.
The design includes the system
architecture design and component
identification/selection.

The different steps in the component-
based systems development process are:

• Find components that may be used in
the system. All possible components are
listed here for further investigation. To
successfully perform this procedure, a

vast number of possible candidates must
be available as well as tools for finding
them. This is an issue not only of
technology, but also of business.

• Select the components that meet the
requirements of the system. Often the
requirements cannot be fulfilled
completely, and a trade-off analysis is
needed to adjust the system architecture
and to reformulate the requirements to
make it possible to use the existing
components.

• Alternatively, create a proprietary
component to be used in the system. In
a component-based development process
this procedure is less attractive as it
requires more efforts and lead-time.
However, the components that include
core-functionality of the product are
likely to be developed internally as they
should provide the competitive
advantage of the product.

• Adapt the selected components so that
they suit the existing component model
or requirement specification. Some
components would be possible to be
directly integrated in to the system,
some would be modified through a
parameterisation process, some would
need wrapping code for adaptation, etc.

• Compose and deploy the components
using a framework for components.
Typically component models would
provide that functionality.

• Replace earlier with later versions of
components. This corresponds with
system maintenance. Bugs may have
been eliminated or new functionality
added.

There are many other aspects of CBD that
require specific methods, technologies
and management. For example,
development environment tools [24,25],
component models and support for their
use, software configuration management
[26], testing, software metrics, legal issues,
project management, development
process, standardisation and certification
issues, etc. Discussion of these is beyond
the scope of this article and the relation
between software architecture and CBD is
discussed in the following.

Software Architecture and
Component-Based
Development
Software architecture and components are
closely related. All software systems have
an architecture that can be viewed in

terms of the decomposition of the system
into components and their relations. A
commonly used definition of Software
architecture is 0: ‘The software architecture of
a program or computing system is the structure
or structures of the system, which comprise
software components, the externally visible
properties of those components and the
relationships among them.’ Traditionally,
software architecture is at the focus in the
early design phase when the overall
structure of the system is designed to
satisfy functional and non-functional
requirements. In monolith applications,
the architecture specified in the design
process is concealed at execution time in
one block of executable code. Component
technologies focus on composition and
deployment, closer to or at execution
time. In a component-based system, the
architecture remains recognisable during
the application or system execution, the
system still consisting of clearly separated
components. The system architecture thus
remains an important factor during the
execution phase. Component-based
Software Engineering embraces the total
lifecycles of components and component-
based systems and all the procedures
involved in such lifecycles.

In a ‘classical’ approach, the design of
software begins with determining its
architecture, structuring the system in
smaller parts, as independent as possible.
The first phase of this structuring is
functionality-based architectural design.
The second phase is software architecture
assessment during which the software
architecture is evaluated with respect to
the driving quality requirements. Once the
software architecture has been defined, the
components that are to constitute the
system must be developed or selected. We
can distinguish different categories of
components in relation to the
requirements of the system: special
purpose components, developed
specifically for the system, reused
components, internally developed for
multiple usage, and final commercial
components (COTS). Pre-existing
components typically need to be
integrated into the system using glue code
or a modification of the components
themselves. This top-down approach
ensures the fulfilment of the requirements,
or at least a better control of requirements
fulfilment. However, this approach does
not encourage the reuse of pre-existing
components, especially not commercial
components, since there is a high degree

Winter 2001 focus review

130 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

software2-4 260302 8:49 AM Page 130

of probability that the pre-existing
components do not exactly fit into the
system. Another approach, a mix of
bottom-up and top-down approaches
begins with the system requirements and
the analysis of possible candidate
components. The component specification
and selection have an impact on the final
requirements and the system architecture.
In this case, software architecting is
primarily concerned with identifying
means of optimising the interactions
between the given components. Since basic
artefacts for both software architecture and
component technologies are components
and their composition is natural that they
will merge, i.e. use common techniques,
methods and tools. Architectural definition
languages (ADLs), for example ACME [29],
can be used for designing component-
based-systems and implemented for the
existing component models.

Software architecture is often related to a
process of tradeoff analysis. Experience
has shown that the many attributes of

large software systems live principally in
the system’s software architecture. In such
systems the achievement of qualities
attributes depends more on the overall
software architecture than on code-level
practices such as language choice, detailed
design, algorithms, data structures,
testing, and so on. There exist several
methods for such analysis, for example
SAAM (Software Architecture Analysis
Method) [30] and ATAM (Architecture
Tradeoff Analysis Method) [31]. Both
ATAM and SAAM are a scenario-based
method. However, unlike the SAAM, the
ATAM focuses on multiple quality
attributes (modifiability, availability,
security, and performance) and is aimed
at locating and analysing trade-offs in a
software architecture. For component-
based systems a modified approach in
these analyses is required. The components
have pre-determined attributes, some of
them immanent only to the component,
but some of them emerging in
composition with other components. A
trade-off analysis helps in selecting the

proper components and in predicting the
attributes of component compositions. At
the same time inclusion of the pre-
existing components sets the boundaries
in which the analysis can be performed.
For example one characteristic of a
candidate component can be a high
reusability but a poor performance, while
of the other candidate a better
performance but a lower reusability. The
architectural analysis will help in making a
decision in component selection.

Software architecture and CBD are
successfully used in the development of
software product lines [22,27] from which
many variants of a product are delivered.
Typical product variants contain a set of
core-components and a number of
additional components. The component-
based approach and architectural design
play an important role in product
configuration management.

UML and Component-Based
Systems Modelling
UML (Unified Modelling Language) can
be used for both component and system
modelling, as shown in [21]. Component-
driven design concentrates on interface
definitions and collaboration between the
components through the interfaces. The
design process continues with the
modelling of the system with physical
components, which do not necessarily
match the logical structure. These may be
pre-existing components, with interface
already specified and possibly in need of
wrappers. One logical component,
identified in the first phase of design, may
consist of several physical components.
Finally, there is a deployment aspect, the
components being executed on different
computers in a distributed application. In
a non-component-base approach the first,
the design phase is important, while
mapping between the conceptual and
implementation level is a direct mapping,
and the deployment phase is the same for
the whole application. In principle, UML
[32] can be utilised to provide support for
designing component-based systems
covering all these aspects [1,5]. Interfaces
are presented as multiple subsystems (also
multiple interfaces may be realised by a
subsystem), which indicate the possibility
of changing the implementation without
replacing the interface. An interface can
be presented in two ways (see Figure 2),
the second alternative being the more
common presentation.

Winter 2001 focus review

131Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

Figure 3 Examples of different aspects of component-based architecture

software2-4 260302 8:49 AM Page 131

Figure 3 shows the three aspects of system
architecture. The conceptual architecture
is a result of a top-down system analysis
and design and in at least the first step is
not different from a ‘non-component-
based’ design. In the conceptual part the
components are expressed by UML
packages with the <<subsystems>>
stereotype. In the implementation
architecture part, the physical components
are represented by UML components and
the <<imp>> stereotype. Note that the
implementation part is not necessarily the
only refinement of the conceptual level,
but also the structure can be changed. For
example, different packages can include
the same physical components. It may also
happen that the component selection
requires modifications of the conceptual
architecture.

UML is however not specialised for CBD
and certain extensions to standard UML
(such as naming convention, or
stereotypes) are required. The component
interfaces cannot be described by UML at
such a detailed level that they can be used
directly. For this reason there exist
extensions to UML, for example Catalysis
[33]. Further work on UML related to
CBSE is expected. The next major version
of UML (UML 2.0) [34] includes
proposals for extensions for describing
Enterprise Java Beans, data modelling
entities, real-time components, XML
components, etc. Many of these are
related directly or indirectly to CBSE.

Future of Component-
Based Software
Engineering
It is obvious that CBD and CBSE are in the
very first phase of their lives. CBD is
recognised as a new, powerful approach
that will, if not revolutionise, at least
significantly change the development of
software and software use in general. We
can expect that components and
component-based services will be widely
used by non-programmers for building
their applications. Tools for building such
applications by component assembly will be
developed. Automatic component update
over the Internet, already present today in
many applications, will be a standard
means of application improvement.
Another trend we can see is the
standardisation of domain-specific
components on the interface level. This will
make it possible to build applications and
systems from components purchased from

different vendors. The standardisation of
domain-specific components requires the
standardisation of domain-specific
processes. Widespread work on
standardisation in different domains is
already in progress, (a typical example is
OPC Foundation [35], working on a
standard interface to make possible
interoperability between automation/
control applications, field systems/devices
and business/office applications). Support
for the exchange of information between
components, applications, and systems
distributed over the Internet will be further
developed. Works related to XML [36] will
be further expanded.

CBSE is facing many challenges today,
some of these are summarised in the
following.

• Trusted components — Because the
trend is to deliver components in binary
form and the component development
process is outside the control of
component users, questions related to
component trustworthiness become of
great importance. The meaning of
‘trustworthiness’ is, however, not
precisely defined. Although there are
formal definitions of many attributes
associated with the concept
‘trustworthiness’ (reliability and
robustness, for example), there is no
formal definition and understanding of
‘trustworthy’, no standardised
measurement or trustworthiness. What
are the effects of different degrees of
trustworthiness on system attributes is
not known.

• Component certification — One way of
classifying components is to certificate
them. In spite of the common belief that
certification means absolute
trustworthiness, it in fact only gives the
results of tests performed and a
description of the environment in which
the tests were performed. While
certification is a standard procedure in
many domains, it is not yet established
in software in general and especially not
for software components [37,38].

• Composition predictability — Even if we
assume that we can specify all the

relevant attributes of components, it is
not known how these attributes
determine the corresponding attributes
of systems of which they are composed.
The ideal approach to derive system
attributes from component attributes is
still a subject of research. A question
remains — ‘Is such derivation at all
possible? Or should we not concentrate
on the measurement of the attributes of
component composites?’ [39].

• Requirements management and
component selection — Requirements
management is a complex process. A
problem of requirements management is
that requirements in general are
incomplete, imprecise and contradictory.
In an in-house development, the main
objective is to implement a system that
will satisfy the requirements as far as
possible within a specified framework of
different constraints. In component-based
development, the fundamental approach
is the reuse of existing components. The
process of engineering requirements is
much more complex as the possible
candidate components usually lack one
or more features which meet the system
requirements exactly. In addition, even if
some components are individually well
suited to the system, it is not necessary
that they do not function optimally in
combination with others in the system —
or perhaps not at all. These constraints
may require another approach in
requirements engineering — an analysis
of the feasibility of requirements in
relation to the components available and
the consequent modification of
requirements. As there are many
uncertainties in the process of
component selection there is a need for a
strategy for managing risks in the
components selection and evolution
process [5,40].

• Long-term management of component-
based systems — As component-based
systems include sub-systems and
components with independent lifecycles,
the problem of system evolution
becomes significantly more complex.
There are many questions of different
types: technical issues (can a system be
updated technically by replacing
components?), administrative and
organisational issues (which components
can be updated, which components
should be or must be updated?), legal
issues (who is responsible for a system
failure, the producer of the system or of
the component?), etc. CBSE is a new

Winter 2001 focus review

132 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Components and component-
based services will be widely used
by non-programmers for building

their applications.

software2-4 260302 8:49 AM Page 132

approach and there is little experience
as yet of the maintainability of such
systems. There is a risk that many
such systems will be troublesome to
maintain.

• Development models — Although
existing development models
demonstrate powerful technologies, they
have many ambiguous characteristics,
they are incomplete, and they are
difficult to use.

• Component configurations — Complex
systems may include many components
which, in turn, include other
components. In many cases
compositions of components will be
treated as components. As soon as we
begin to work with complex structures,
the problems involved with structure
configuration popup. For example, two
compositions may include the same
component. Will these components be
treated as two different entities or will

they be assumed to be one identical
entity? What happens if these
components are of different versions,
which version will be selected? What
happens if these versions are not
compatible? The problems of the
dynamic updating of components are
already known, but their solutions are
still the subject of research [41].

• Dependable systems and CBSE — The
use of CBD in safety-critical domains,
real-time systems, and different process-
control systems, in which the reliability
requirements are more rigorous, is
particularly challenging. A major problem
with CBD is the limited possibility of
ensuring the quality and other non-
functional attributes of the components
and thus our inability to guarantee
specific system attributes.

• Tool support — The purpose of Software
Engineering is to provide practical
solutions to practical problems, and the

existence of appropriate tools is
essential for a successful CBSE
performance. Development tools, such
as Visual Basic, have proved to be
extremely successful, but many other
tools are yet to appear — component
selection and evaluation tools,
component repositories and tools for
managing the repositories, component
test tools, component-based design
tools, run-time system analysis tools,
component configuration tools, etc. The
objective of CBSE is to build systems
from components simply and efficiently,
and this can only be achieved with
extensive tool support.

These are some of the many challenges
facing CBSE today. The goal of CBSE is
to standardise and formalise all disciplines
supporting activities related to CBD. The
success of the CBD approach depends
directly on further research and the
implementation of CBSE.

Winter 2001 focus review

133Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

References

[1] Brown A. Large-Scale Component-Based
Development. Prentice Hall, 2000.
[2] Mrva M. Reuse Factors in Embedded Systems
Design. High-Level Design Techniques Dept. at
Siemens AG, Munich, Germany, 1997.
[3] Crnkovic I, Larsson M. A Case Study: Demands
on Component-based Development. Proceedings
22nd International Conference on Software
Engineering, ACM Press, 2000.
[4] Szyperski C. Component Software –Beyond
Object-Oriented Programming. Addison-Wesley,
1998.
[5] Heineman G, Councill W. Component-based
Software Engineering, Putting the Pieces Together.
Addison Wesley, 2001.
[6] ICSE 2000, Workshop on Component-Based
Software Engineering (CBSE 3), http://www.sei.
cmu.edu/cbs/cbse2000/CFP2000.html, Access date
2001-07-14.
[7] ICSE 2001, Workshop on Component-Based
Software Engineering (CBSE 4),
http://www.sei.cmu.
edu/pacc/CBSE4-Proceedings.html, Access date
2001-07-14.
[8] ECOOP 2000, Workshop on Component-
Oriented Programming,
http://www.ipd.hk-r.se/bosch/WCOP2000/, Access
date 2001-07-14.
[9] Euromicro 2001, Workshop on Component-
Based Software Engineering,
http://www.idt.mdh.se/ecbse/, Access date
2001-07-14.
[10] Workshop on CBSE – ABB Corporate Research
Centre, Switzerland, 2000, http://icawww2.epfl.ch/
~opreiss/CBSE_Conference2000/, Access date
2001-07-14.
[11] Gartner Group, http://www.gartner.com,
Access date 2001-07-14.
[12] Brown A, Wallnau K. The current state of
CBSE, IEEE Software, 1998.
[13] Szyiperski C, Pfister C. Workshop on
Component-Oriented Programming, Summary. In
Mühlhäuser M. (ed.) Special Issues in Object-

Oriented Programming — ECOOP96 Workshop
Reader, Springer, 1997.
[14] ICSE 1999, Workshop on Component-Based
Software Engineering (CBSE 2),
http://www.sei.cmu.edu/cbs/icse99/cbsewkshp.html,
Access date 2001-07-14.
[15] Box D. Essential COM. Addison-Wesley, 1998.
[16] Microsoft Component Object Model,
http://www.microsoft.com/com/, Access date 2001-
07-14.
[17] Microsoft .NET Component Model,
http://www.microsoft.com/net, Access date 2001-
07-14.
[18] Enterprise Javabeans technology,
http://java.sun.com/products/ejb/, Access date
2001-07-14.
[19] Matena V, Stearns B. Applying Enterprise
JavaBeans(TM): Component-Based Development
for the J2EE(TM) Platform. Addison-Wesley, 2000.
[20] OMG, CORBA,
http://www.omg.org/technology/documents/
spec_catalog.htm, Access date 2001-07-14.
[21] Cheesman J, Daniels J. UML Components —
a Simple Process for Specifying Component-Based
Software. Addison-Wesley, 2001.
[22] Bosch J. Design & Use of Software
Architecture. Addison Wesley, 2000.
[23] Maiden N, Ncube C. Acquiring Requirements
for Commercial Off-The Shelf Package Selection,
IEEE Software 1998; 15(2).
[24] Microsoft Visual Studio,
http://msdn.microsoft.com/vstudio/, Access date
2001-07-14.
[25] Development tools — Forte ™ tools,
http://www.sun.com/forte/, Access date 2001-07-
14.
[26] Larsson M, Crnkovic I. New challenges for
configuration Management, Proceedings of 9th

Symposium on System Configuration Management,
Lecture Notes in Computer Science, Springer,
1999.
[27] Bosch J. Software Product Lines:
Organisational alternatives, ICSE 2000 Proceedings,
ACM Press, 2001, 91-100.

[28] Bass L, Clements P, Kazman R, Software
Architecture In Practice. Addison Wesley, 1998.
[29] ACME architecture definition language,
http://www.cs.cmu.edu/~acme/, Access dated
2001-07-14.
[30] Kazman R, Abowd G, Bass L, Clements P.
Scenario-based analysis of software architecture.
IEEE Software 1996: 47–55.
[31] Kazman R, Barbacci M, Klein M, Carrière SJ.
Experience with Performing Architecture Tradeoff
Analysis, ICSE 1999 Proceedings, ACM Press,
1999, 54–63.
[32] Booch G, Jacobson I, Rumbaugh J. The
Unified Modeling Language User Guide. Addison-
Wesley, 1998.
[33] D’Souza D, Wills A. Objects, Components, and
Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1998.
[34] OMG UML,
http://www.omg.org/technology/uml, Access date
2001-07-14.
[35] OPC Foundation,
http://www.opcfoundation.org/ , Access date
2001-07-14.
[36] Extensible Markup Language (XML)
http://www.w3.org/XML, Access date 2001-07-14.
[37] Voas J, Payne J. Dependability certification of
software components. Journal of Systems and
Software 2000; 52: 165–172.
[38] Morris J, Lee G, Parker K, Bundell G, Peng
Lam C. Software component certification. IEEE
Computer 2001.
[39] Wallnau K, Stafford J. Ensembles: Abstractions
for a New Class of Design Problem, 27th Euromicro
Conference 2001 Proceedings, IEEE Computer
Society, 2001: 48–55
[40] Kotonya G, Rashid A. A strategy for Managing
Risks in Component-based Software Development,
27th Euromicro Conference 2001 Proceedings,
IEEE Computer Society, 2001: 12–21.
[41] Crnkovic I, Larsson M, Küster Filipe JK, Lau K.
Databases and Information Systems, Fourth
International Baltic Workshop, Baltic DB&IS,
Selected papers. Kluwer Academic Publishers,
2001: 237–252.

software2-4 260302 8:49 AM Page 133

