
Page 1, 27 January 2011

Introduction to 
Component-Based Software

Engineering"
Ivica Crnkovic"

Mälardalen University, "
Department of Computer Engineering"

Sweden"
ivica.crnkovic@mdh.se"

http://www.idt.mdh.se/~icc"

Page 2, 27 January 2011

Topic overview"

1 "The challenges of SW- how can CBD help?"
2   What is a software component?"
3   Software Architecture and Software Components"
4   Basic principles of component-based approach"
5   Component-based Software Development Process"
6   Problems and research issues"
7   References"

Page 3, 27 January 2011

Part 1  
The challenges of software development
- how can component software help?"

Page 4, 27 January 2011

Software problems"
How to develop high quality software in an efficient an

inexpensive way? "
"
The “software crisis” (1968) still exists:"

  SW is late"
  SW is buggy"
  SW is expensive"
  SW is difficult to understand"
  Software is difficult to maintain (problems with software

life cycle)"

NATO conf 1968

SW crisis

SW engineering

components

Page 5, 27 January 2011

SW Productivity Gap (ITEA)"

www.itea-office.org

Page 6, 27 January 2011

Challanges of Software Engineering"

(The author of slides with blue background: Michel Chaudron, TUe

Page 7, 27 January 2011

Page 8, 27 January 2011

Software paradigm shift"
Productivity

Time

Structured
programming

Object-Oriented
Development

Component-based
development

Agent-based
development

Design
method

Language

System
organization

1970 1990 2000 2005

COBOL, C
FORTRAN, ADA

Smalltalk
C++

SA/SO UML ADL’s ???

C++
Java Agglets ?

Mainframe Client-server N-tier
distributed Self-organizing

© 2001 ITEA Office Assoc

ITEA-Softec project

Page 9, 27 January 2011

Answer: Component-based Development"

  Idea:"
  Build software systems from pre-existing

components (like building cars from existing
components)"

  Building components that can be reused in
different applications"

  Separate development of components from
development of systems "

Page 10, 27 January 2011

Component-Based Software Engineering (CBSE)"

  Provides methods and tools for"
  Building systems from components!

  Building components as reusable units"

  Performing maintenance by  
replacement of components and introducing new
components into the system "

Page 11, 27 January 2011

application

Component
#1

Component
#2

Component
#3

Component
#4

components
Component-based software construction (1) "

Component
#1

Component
#2

Component
#3

Component
#4

construction

Page 12, 27 January 2011

Concentration on the business parts"

Business issues

GUI

Communication

GUI

Data model

Deployment

- - - - - -

INFRASTRUCTURE

Standard
Reusable parts

Application
specific

“30 % of SW development effort is spent on infrastructure that adds no value”"

Page 13, 27 January 2011

Is CBD the same as OOP?"

  Object-oriented programming"

Object
 Attributes
 Methods

Object
 Attributes
 Methods Message

Are objects the same as components?

Page 14, 27 January 2011

Side remark: OO and reuse"
 Object orientation is not primarily concerned with reuse, but

with appropriate domain/problem representation"
 using the technological enablers"

  Objects, classes, inheritance, polymorphism "
 Experience has shown that the use of OO does not

necessarily produce reusable SW"
CBD "

  scale reusable entities: Component = many objects in
collaboration "

  reusable parts on the execution level (plug-in)"
  Additional services provided by component models"

"

Page 15, 27 January 2011

Part 2  
What is a software component? 
 
"

Page 16, 27 January 2011

  The software architecture of a program or computing system is the
structure or structures of the system, which comprise software
components [and connectors], the externally visible properties
of those components [and connectors] and the relationships
among them.” "

"Bass L., Clements P., and Kazman R., Software Architecture in
Practice, "

" C1

C4
C2

C5 C3

Architectural point of view"

17
2011-01-27

CORBA (Common Object Request Broker Architecture)

CORBAapps CORBAdomains CORBAfacilities

CORBAservices

Another example  
Object Management Architecture Overview"

Transactions Event Security Naming

Corba component model"

Page 18, 27 January 2011

Page 19, 27 January 2011

Some successful components: In the past..."

  Mathematical libraries"
  NAGLIB - Fortran Library "
  Mathematical and physical functions"

  Characteristics"
  Well defined theory behind the functions - very well

standardized"
  Simple Interface - procedural type of communication

between client (application) and server (component)"
  Well defined input and output"
  Relative good error handling"
  Difficult for adaptation (not flexible)"

Page 20, 27 January 2011

Some successful components: The big ones…"

Client - server type"
  Database"

  Relational databases, (Object-oriented databases,
hierarchical databases)"

  Standard API - SQL"
  Different dialects of the standard"

  X-windows"
  Standard API, callback type of communication"
  High level of adaptation"
  Too general - difficult to use it"

Page 21, 27 January 2011

 Even bigger components: Operating systems"

  Example - Unix"
  A general purpose OS, used as a platform for dedicated

purposes"
  Standard API - POSIX"
  Commands uses as components in a shell-process"
"Example: sort out words from text files:"

" " "$ cat file1 file2 file3 ... | sed ’s/ /\
 /g’ | sort -u >words.txt"

  Different variants, POSIX is not sufficient"
  Not a real component behavior (difficult to replace or update) "

  MS Windows ..."

Page 22, 27 January 2011

Frameworks - building “the real components”"

  Component Object Management - COM, Active X"
  Enterprise JavaBeans"
  CORBA components"
  .NET"

Late binding - easy replacement"

Word document

Excel document

My_application

Excel document

component

Page 23, 27 January 2011

Example: The architecture of a car control system"

Vehicle mechanics

ECU

Sensor Actuator Sensor

ECU

Sensor Actuator Sensor

ECU

Sensor Actuator Sensor

gateway
(CAN) BUS

brake injection

Infotaiment

ECU – Electronic Control Unit

Page 24, 27 January 2011

The architectural design challenge "

Vehicle stability Suspension Drive by wire …… Complex functions

Local Control Functions

Sensor Actuator Sensor

Basic functions Local Control Functions

Sensor Actuator Sensor

How to implement complex functions based on local control functions?

Page 25, 27 January 2011

Problem: resource sharing "

Sensor 1

Sensor 2

Sensor 3

Sensor ..

Network
resources

++++++++++

++++++++++

++++++++++ Sensor ..

Execution
resources

Node 1

Node 2

Node 3

Node …

Node …

Actuator 1

Actuator 2

Actuator 3

Actuator …

Actuator …

Can functions of different criticality be allowed to share resources?

Page 26, 27 January 2011

sensors

Challenge – open and dependable platform"

Vehicle

actuators

Engine Control Local brake Control Transmission ……… local

Vehicle stability

Cruise control
Antispin Global

(complex)
functions

Hardware

Input/output drivers

Middleware

ECU

ECU

ECU

Applications

SOFTWARE COMPONENTS

Collision detection

Page 27, 27 January 2011

Challenge – open and dependable platform"

Hardware

Input/output drivers

Middleware

ECU

ECU

ECU

Applications C1 C2

Requirements
Separation of hw from SW development
Separation of SW component development

Page 28, 27 January 2011

Szyperski: Software Component Definition"

Szyperski (Component Software beyond OO programming)"
  A software component is "

  a unit of composition "
  with contractually specified interfaces "
  and explicit context dependencies only."

  A software component "
  can be deployed independently "
  it is subject to composition by third party. "

Will you meet him?

Page 29, 27 January 2011

Composition unit"
"A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party. –Clemens Szyperski"

"
"
"
"
"
"
"
! !How much components fit together?!
! !How much costs the glue code?!

"

Components
Glue code

System

Page 30, 27 January 2011

What is a contract?"
"A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party."

"
  Interface – component specification"

  Contract - A specification attached to an interface that mutually
binds the clients and providers of the components."
  Functional Aspects (API)"
  Pre- and post-conditions for the operations specified by API."
  Non functional aspects (different constrains, environment

requirements, etc.)"

Page 31, 27 January 2011

What is an explicit context dependency?"
"A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third party."

"
  Provided and Required Interface"

  Context dependencies - Specification of the deployment
environment and run-time environment"
  Example: Which tools, platforms, resources or other

components are required?"
"
Do"

Page 32, 27 January 2011

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party."

"

  Late binding - dependencies are resolved at load or run-time."
"
""

"!

What does it mean deployed independently?"

Platform (framework)

connector

Page 33, 27 January 2011

Example: Interface description: (M)IDL"
(Microsoft) Interface Definition Language"

 [
 uuid(00112233-ABBA-ABBA-ABBA-BADBADBADBAD),
 object
]
 interface IAddressList {
 HRESULT addAddress ([in] name, [in] address);
 HRESULT deleteAddress ([in] name, [in] address);
 }

  language independent interface specification"
  can be compiled into language dependent code skeletons"

Page 34, 27 January 2011

Components and Interfaces - UML definition"

Component

Interface

Operation

*

in-interfaces*

*

*

Name

1

1

1 1
1

1

Parameter

1

*

Type
1 *

OutParameterInParameter

InOutParameter

*

out-interfaces

*

Component – a set of interfaces
 required (in-interfaces)
 provided (out-interfaces)

Interface – set of operations
Operations – input and output parameters of

 certain type

Page 35, 27 January 2011

Contractually specified interfaces in a UML metamodel"

Interface

Component

*

in-interfaces*

*

out-interfaces

*

State
1 *

Constraint

*

*

* 1

Invariant

1

*

1

*

Operation

*

*

Parameter

1

*

PreCondition
* 1

PostCondition
1 *

1

*

InParameter OutParameter

*

*

*

*

*

*

*

2

Page 36, 27 January 2011

  Is Szyperski definition enough?"

Page 37, 27 January 2011

Component specification"

  Components are described by
their interfaces "

  (A black box character)"

glass box glass box

black box black box

white box white box

grey box grey box

Page 38, 27 January 2011

Nice components that can be composed (put together)

Page 39, 27 January 2011

Page 40, 27 January 2011

Page 41, 27 January 2011

Another definition"

  A software component is a software element that "
  confirms a component model "
  can be independently deployed "
  composed without modification according to a

composition standard. "
  A component model defines specific interaction and

composition standards."
""
"G. Heineman, W. Councel, Component-based software engineering, putting the
peaces together, Addoson Wesley, 2001"

Page 42, 27 January 2011

Page 43, 27 January 2011

Page 44, 27 January 2011

Page 45, 27 January 2011

Page 46, 27 January 2011

Page 47, 27 January 2011

Summary CBSE – basic definitions"

  The basis is the Component"
  Components can be assembled according

to the rules specified by the component
model"

  Components are assembled through their
interfaces"

  A Component Composition is the process of
assembling components to form an
assembly, a larger component or an
application"

  Component are performing in the context
of a component framework"

  All parts conform to the component model"
  A component technology is a concrete

implementation of a component model"

c 1 c 2

Middleware

Run-time system
framework

Component Model

Page 48, 27 January 2011

Component Technology"

Component Framework

Repository

Supporting Tool

Page 49, 27 January 2011

Part 3  
Software Architecture and Software
Components"

Page 50, 27 January 2011

Software Architecture"

L. Bass, P. Clements, R. Kazman, Software Architecture In Practice

  The software architecture of a program or computing

system is the structure or structures of the system, which

comprise software components [and connectors], the

externally visible properties of those components [and

connectors] and the relationships among them.” "

Page 51, 27 January 2011

Aspects of Software Architecture"

Connector

Role Port

Attachment

(sub)System

Architectural Component

Representation

  Elements and Form
  (UniCon notation)

Page 52, 27 January 2011

Two Tier Architecture "

Database

Tier Boundary

Presentation

Business

Logic

Database
Driver

Data Layer

Presentation / Business Layer

Presentation

Business

Logic

Page 53, 27 January 2011

N-Tier Architecture "

Database

Tier Boundary

Business
Logic

Database
Driver

Business
Logic

Business
Logic

Presentation
Logic

Data Layer

Business Layer

Tier Boundary
Presentation Layer

Page 54, 27 January 2011

N-Tier Architecture - and Components"

Database

Tier Boundary

Business
Logic

Database
Driver

Business
Logic

Business
Logic

Presentation
Logic

Data Layer

Business Layer

Tier Boundary
Presentation Layer

Componet

componet

componet

componet

Page 55, 27 January 2011

Different architecture view in different phases"

  Phase I "
  System architecture - Decomposition of the system"

<<subsystem>>
ComA IComA

<<subsystem>>
ComB IComB

<<subsystem>>
ComC IComC

Conceptual
Architecture

Page 56, 27 January 2011

System Design – Phase 2"

  Implementation Architecture - Component Identification"

<<imp>>
ComA IComA

<<imp>>
ComB IComB

<<imp>>
ComC IComC

<<imp>>
SysX ISysX

<<imp>>
ComY IComY

Implementation
Architecture

Page 57, 27 January 2011

System Design – Phase 3"

  Deployment architecture"

:SysX :ComC

:ComA

Deployment
Architecture

:ComB

Server

DataServer

:ComB

Page 58, 27 January 2011

Basic principles  
of  

Component-based approach"

Page 59, 27 January 2011

Main principles: (1) Reusability"

 Reusing components in
different systems"

 The desire to reuse a
component poses few
technical constraints."

 Good documentation
(component specification…)"

 a well-organized reuse process"
 Similar architecture"
 …."

C1

C1 C2

C3 C4

Application A1

C1 C5

C6 C7

Application A2

Page 60, 27 January 2011

Main principles: (2) Substitutability"
  Alternative implementations of a

component may be used."

  The system should meet its
requirements irrespective of which
component is used. "

  Substitution principles"
  Function level"
  Non-functional level"

  Added technical challenges"
  Design-time: precise definition of

interfaces & specification"
  Run-time: replacement

mechanism"
"

C1 C2

C3 C4

Application A1

C1´ C2

C3 C4

Application A1

Page 61, 27 January 2011

Substitution principle"

  Substituting a component Y for a component X is said to be
safe if:"
  All systems that work with X will also work with Y"

  From a syntax viewpoint, a component can safely be replaced
if:"
  The new component implements at least the same interfaces

as the older components"

  From semantic point of view?"
  Contractual interface holds (pre-, postconditions and

invariants)"

Page 62, 27 January 2011

Substitution principle"
 Principle:"

 A component can be replaced if the new
component"
 Provide a sub-range of the output"
 Can accept larger range of input"

CONDITION.
Everything which comes from the first
Tube fits to the second

C -à C´
Input(c) <_ Input(c’)
Output(C) _> Output(C’)

Page 63, 27 January 2011

Main principles: (3) Extensibility"

  Comes in two flavors: "
  extending components that are part of a

system"
  Increase the functionality of individual

components"

  Added technical challenges:"
  Design-time: extensible architecture"
  Run-time: mechanism for discovering new

functionality"

C1 C2 C3

C1 C2+ C3

C1 C2 C3

C1 C2 C4 C3

Page 64, 27 January 2011

Main principles: (4) Composability"

  Composition of components"
  P(c1 o c2) =P(c1) o P(c2) ??"

  Composition of functions"
  Composition of extra-functional properties"

  Many challenges"
  How to reason about a system composed

from components?"
  Different type of properties"
  Different principles of compositions"

C1 C2

assembly

C

Page 65, 27 January 2011

Page 66, 27 January 2011

Page 67, 27 January 2011

Page 68, 27 January 2011

Page 69, 27 January 2011

Part 5  
Component-based software development
process"

Page 70, 27 January 2011

Time to Market – “Classical” Development Process?"

Requirements

Specification

Design

Implementation

Test

Product Lifecycle"
Problems:
• Time To Market
• High Costs
• Meeting deadlines
• Visibility

Operation &
Maintenance

TIME

Page 71, 27 January 2011

Development process"
  COTS and outsourcing require different development

processes"
"

Requirements

Specification

Design

Implementation

Test

Find & Select

Adapt

Deploy

Page 72, 27 January 2011

Development process – emphasize reuse"

  Managing COTS in the early stage of the development
process"

Requirements

Specification

Design

Implementation

Test

Deploy

Find & Select

Adapt

Test

Page 73, 27 January 2011

CBD – separation of development processes"

Requirements

Specification

Design

Implementation

Test

Deploy

Find & Select

Adapt

Test

Application
development

Component
development

Operation &
Maintenance

Page 74, 27 January 2011

Types of component-based development ""

  Internal components as structural entities"
  Reusable components developed in-house"
  COTS (commercial off the shelf) components"

Page 75, 27 January 2011

Product Line Architecture"

  Core components building a core functionality"
"(Basic platform)"

  A set of configurable components combined building
different products"

Page 76, 27 January 2011

Platform-based products"

Basic services

Middleware / infrastructure

Platform layer

Application
layer

Page 77, 27 January 2011

Advantages of Software Product Lines"

  Using existing infrastructure"
  Savings 30%-40% of efforts per product"
  Time to Market - improved"

  Larger variety of products"
  Uniform and recognizable functionality/interface"
  Better scalability (not obvious!)"
  Better maintainability (not obvious!)"
  Better possibility of component replacement"

Page 78, 27 January 2011

The Cathedral and the Bazaar?

La Sagrada Familia, Barcelona

Building Started:
On March 19, 1882

Still not completed

Is it worth to build it in that way?

Building platforms

Similar with platform-based
And component-based development
Is it worth?

Page 79, 27 January 2011

Part 6  
Problems and research issues"

Page 80, 27 January 2011

CBSE research and the SW life-cycle"

Analysis
Design

Implementation
Testing Deployment

Analysis
Design

Implementation
Testing Deployment

Analysis
Design

Implementation
Testing Deployment

Quality Management

Project Management

Components
Application

- assembly
- finding
- trusting
- distribution
- glue code

- design for
 customization/
 variability
- wrapping
- specification/contracts

- development
 methods
- frameworks

- storage
- documentation

- run-time
infrastructures

- configuration
 management

- certification
- SW development process

- team structure

Page 81, 27 January 2011

Specification"
Are more than interface method definitions"
  How to specify?"

  Interfaces, behavior (pre-/post conditions, invariants)"
  dependencies (required interfaces)"
  quality of service"

  How to test/verify component specifications?"
  How to document component specifications?"
  How to automatically connect components in builder tools

using their specification?"
  How to verify the correctness of a composite system?"
  ... "

Page 82, 27 January 2011

Design for reuse"

Design for reuse requires additional effort"
"
  What is the best level of reuse (component granularity)?"
  How can the benefit of reuse be measured?"
  Development and documentation of component usage

patterns"

Page 83, 27 January 2011

Repositories"
  How to store components?"
  How to classify and describe components?"
  How to find components?"

  fast"
  different aspects"

 interfaces"
 functionality"
 component model"
 certification level"
 previous usage, trust"

  negotiable requirements"

Page 84, 27 January 2011

Software development process"
  Current approach"

requirements - analyses - design - implementation - test"
  CBSE approach must include"

  reuse component selection"
  component test"
  requirements reconciliation"

  CBSE must be supported by"
  modeling formalisms and tools"
  development tools"

Page 85, 27 January 2011

Developing a component market"
Imperative feature for component success"
"
  Have to establish framework for …?"

  legal aspects (licensing and warranties)"
  technical abilities"
  economic forces"

  Proven business case"
  Repositories, precise descriptions and search engines"
  Documentations and application support"

Page 86, 27 January 2011

Versioning and configuration management"

  Is more complex than usually (DLL hell)"
  especially in dynamic environments"

  Dependencies and composition constraints have to be
resolved almost automatically"
  consider systems comprising thousands of components"

  How to do safe exchange of components e.g. upgrade,
without contractual specification and proof?"

  All of the issues above are prerequisite for uploading
and downloading of components"

Page 87, 27 January 2011

Security"

  Requires trust and certification"
  complicated by large group of (small) vendors"
  ‘mobile code security’ important"

  not user access control but code access control"
  current mechanisms"

  sandboxing: restricted functionality, restricted availability"
  codesigning: not necessarily suitable to establish trust"

 prove of problem origin"
 difficulty of persecution"

Page 88, 27 January 2011

Problems and research issues - Summary"

  Contracts and documentation"
  Design for reuse"
  Repositories"
  Software development process"
  Organizational changes"
  Developing a component market"
  Versioning and configuration management"
  Security"
  Component models for embedded systems"

Page 89, 27 January 2011

Part 7  
 Information sources"

This presentations is based on:"
  Ivica Crnkovic, Magnus Larsson:

Building reliable component-based systems"
  Chapters:"
  PART 1 "The Definition and Specification of Components "

 Chapter 1 Basic Concepts in Component-Based Software Engineering!
 Chapter 2 On the Specification of Components!

  PART 2 SOFTWARE ARCHITECTURE AND COMPONENTS "
 Chapter 3 Architecting Component-based Systems"
 Chapter 4 Component Models and Technology"

  PART 3 DEVELOPING SOFTWARE COMPONENTS "
 Chapter 6 Semantic Integrity in Component Based Development 
"

  Ivica Crnkovic: CBSE - New Challenges in Software Development"
  Ivica Crnkovic et al:

Specification, Implementation and Deployment of Components"

Page 90, 27 January 2011

Page 91, 27 January 2011

Books"
  Clemens Szyperski: Component Software : Beyond

Object-Oriented Programming: (1998), 2003 – second
edition"

  Alan W. Brown: Large-Scale Component-Based
Development"

  Betrand Meyer: Object-Oriented Software Construction, 2nd"

  G.T. Heineman, W. Councill: CBSE Putting the Pieces
Together"

  J. Cheesmam, J. Daniels: UML Components"
  K. Wallnau: Building Systems form Commercial

Components!
  Ivica Crnkovic & Magnus Larsson: 

CBSE - Building reliable component--based
systems!

Page 92, 27 January 2011

Journals"
  IEEE Computer"
  IEEE Software"
  IEEE Internet Computing"
  IEEE Transactions on Software Engineering"
  IEEE Transactions on Computers"
  ACM Transactions on Programming Languages and Systems

languages and programming systems. "
  ACM Transactions on Software Engineering and Methodology "
  ACM Transactions on Computer Systems"
  Software Development (www.sdmagazine.com)"
  … all major SW development magazines"

Page 93, 27 January 2011

Conferences"
  International Workshop on Component-Based Software

Engineering, ICSE, CBSE"
"http://www.csse.monash.edu.au/~hws/CBSE10/"

  Euromicro CBSE track  
http://www.idt.mdh.se/ecbse/2007/ "

"

Page 94, 27 January 2011

Conferences"
  International Conference on Software engineering

(ICSE)"
  ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA)
(oopsla.acm.org)"

  International Workshop on Component-Oriented
Programming (WCOP)"

  Symposium on Generative and Component-Based
Software Engineering"

  Technology of Object-Oriented Languages and Systems
(TOOLS) (www.tools-conferences.com)"

  International Conference on Software Reuse (ICSR)"
  ESEC/FSE "

